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A monotone scheme for finite volume simulation of magnetohydrodynamic inter-
nal flows at high Hartmann number is presented. The numerical stability is analysed
with respect to the electromagnetic force. Standard central finite differences applied
to finite volumes can only be numerically stable if the vector products involved in
this force are computed with a scheme using a fully staggered grid. The electromag-
netic quantities (electric currents and electric potential) must be shifted by half the
grid size from the mechanical ones (velocity and pressure). An integral treatment of
the boundary layers is used in conjunction with boundary conditions for electrically
conducting walls. The simulations are performed with inhomogeneous electrical
conductivities of the walls and reach high Hartmann numbers in three-dimensional
simulations, even though a non-adaptive grid is useg 1999 Academic Press
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1. INTRODUCTION

MagnetohydrodynamiovHbp) duct flows have been extensively studied by asymptoti
theory. However, very little work is based on inertial flows. Three-dimensional numeric
simulations of inertial flows are often limited to the steady regime and are always limitec
very low Hartmann numbers (Ha50) [1, 2]. The square of the Hartmann number is the rati
between the electromagnetic and the viscous forces. Itis therefore a measure of the mag
field strength for a given fluid in a duct of a given scale. Although some linear stabili
analysis is available [3], it is only recently that the non-linear regime has been investige
numerically with success at high Hartmann numbers{H#00) [14]. However, this recent
work is strictly two-dimensional and concerns the flow between two infinite plates.
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In the present paper the full geometry of a duct is considered and the effect of the w
parallel to the magnetic field is shown. Moreover the simulations are performed in th
dimensions, allowing the flow to depart from its two-dimensional structure.

Because the Hartmann layers are very thin, they are not treated numerically. The ele
currents which close within the Hartmann layers are integrated analytically and adde
the electric currents which close within the Hartmann walls. The numerical resolution
then only limited by the side layers parallel to the magnetic field. These layers are mi
thicker. While the thickness of the Hartmann layers scales wittt Hhat of the side layers
scales with Ha/?. As a result the simulations are performed at a higher Hartmann numt
(Ha=300) than those of the former three-dimensional simulations, even though no adag
grid is used.

1.1. Governing Equations

The flow of an electrically conducting fluid under the influence of an external magne
field with negligible induced field is governed by the following equations [4] which expre:
the conservation of mass and momentum,

V-u=0, Q)
1/0u

R
N(at““'v)”)__VpHXH%VU’ @)

together with the conservation of electric charge and Ohm’s laws,

V.j=0, 3
j=-Vd+4+uxy. 4)
The duct has its axis inthedirection and has arectangular cross-section ig#fpane. The
magnetic field is uniform and aligned with tlyedirection. The induced field is neglected.
The dimensionless variables are scaled as follows. The three coordinates are express
terms of the length scala, chosen as the half width of the duct in thairection. The scale
of the velocityu is the mean velocityy. The unit of time is the length scale divided by the
mean velocity. The current densijtis scaled with the product of the electrical conductivity
o of the fluid, the mean velocity, and the strength of the magnetic Bel@he magnetic
field is scaled with its own strengtB so that its dimensionless representation is the un
vectory.

As in the classical literature on the inertialess core flow solution, the pressure is sc:
with the mass density of the fluid times the square of the mean velocity times the interactic
parameteN = o B2a/(pvo). In this way, a stationary fully developed flow in a straight duct
is governed in its core by the balance between the pressure gradient and the Lorentz f
the viscous terms being negligible outside the region of strong shear. The present w
however, keeps all terms.

There are two dimensionless parameters in this problem. The interaction par&inete
characterises the ratio between the electromagnetic and the inertia forces, and the Hart
number squared is defined as’Hao B%a?/u, wherep is the dynamic viscosity of the fluid.
The Reynolds number may be expressed as the ratio between these two parameters:

_ he

Re
N

(5)
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2. NUMERICAL METHOD

2.1. Conservative Form

As usual in low-order finite differencing, it is preferable for accuracy and numeric
stability to solve the equations in conservative form. Equation (2) may be written with t
unit tensorl ,

8 =
afl:+V~(u®u+Npl—Re’1Vu)=ij§/. ©6)

2.2. Time Discretisation and Integration Method

The electric current density' at the time step is computed from Ohm’s law. The
electric potential is computed as the solution of the Poisson equation (8) obtained from
divergence of Ohm'’s law (7), assuming conservation of chargg = 0:

j"=-Vo"+u"xy, (7)

V2" = V. (u" x §). (8)
All other terms are evaluated explicitly, with the exception of the pressure. The time dep
dence of the solution is treated with the so-called “fractional step” method [7, 8]. It can

summarised by the following three equations.

First, consider the time-discretised Navier—Stokes equations in conservative form,
un+1 —_u" —
AT +V.U"®@u"+ Npl —Re'vu") = Nj" x §. (9)

Second, take the divergence of this equation in order to obtain the following Poisson-t
equation which can be solved for pressure since its right-hand side is known explicitly
the previous time step:

1 ) . 1
VZp=V.A"  whereA" = -V Uuh) +j"x 9+ @Vzu“. (10)

Third, the velocity at the next time stept 1 is evaluated with a first-order scheme as
u™l = u"+ NAtA" — NAtVp (11)

or with a second-order Adams—Bashforth scheme, which is preferred for unsteady flc
in which case

3 1
Vz :V _An__Ar'I—l , 12
) (2 : ) (12)
3 1
UM — un+§NAtA”_§NAtA”‘1— NAtVp. (13)

2.3. Spatial Discretisation for Velocity and Pressure

The code is based on a three-dimensional finite volume discretisation, on an orthog:
equally spaced grid. The code was initially written with a classical structured finite volur
mesh with all vector quantities at the surfaces of each cell and all scalar quantities in
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middle of the cell (Fig. 4). All derivatives are discretised as central second-order fin
differences such as

ap _ Pk = Piik (14)
OX[i11/2,j .k AX

As the advective term is written in divergence formtsomponent is computed as

auz  a(uv)  A(uw)

V.uu =—+ 15
(U aX ay 0z (15)
with
au2 u_2 = u.2.
ou _ i+1,j.k i,j.k (16)
OX [i41/2,j.k AX
and
a(uv) _Uita2,j+1/2KVi+1/2,j+1/2k — Uit1/2,j-1/2.kVi+1/2,j-1/2.k (17)
Y lit12,jk Ay ’
where
Ui jk = E(Ui+1/2,j,k + Ui—1/2,j,k)s

Uit1/2j+1/2k = é(ui+l/2,j+1,k + Uit1/2,j,k)s

Vit1/2,j+1/2.k = E(Ui+1,j+l/2,k + Vi j+1/2.k)>
and similar definitions apply t0; 1 j k, Ui+1/2,j—1/2.k: Vi+1/2,j—1/2,k andd(Uw)/dz.
The Laplacians op and®, and similarly the Laplacians of the three velocity components
are discretised with ordinary second-order central differences:

V2p|i (= Pi+1jk — 2Pijk + Pi-1jk 4 Puivak = 2pi,jk + Pij-1k
- AX2 Ay?

n Pijk+1 — 2Pi,j.k + Pi,jk—1
AZ2 ’

3. NUMERICAL STABILITY WITH RESPECT
TO THE ELECTROMAGNETIC TERMS

As the current densityas defined in Eq. (4) is the sum of two terms, the Lorentz forc
is the sum of the two terms at the right of the equation

jxy=—-Vexy+@Uxy x¥. (18)

If one first computea x § and ther(u x §) x § using a standard staggered grid, the resultin
finite difference scheme is unstable for either high Hartmann number (strong magnetic fit
or coarse grid spacing in the direction perpendicular to both the magnetic field and to
velocity (z-direction). This numerical instability is characterised by strong local oscillatior
and unphysical jets at the corners of the duct as shown in Fig. 2. The reason for this instat
lies in the finite difference scheme resulting from the staggered grid itself. Indeefljs
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perpendicular tar and cannot occupy the same staggered grid points(&gy. 1). Once

u x ¥ is computed, the same problem occurs when computing ¥) x y. Finally, the
Lorentz force computed as Eq. (18) can only result in an averaging of different values ¢
at several grid points, and it can be shown that this scheme is not monotone unless the
spacing in thez-direction is scaled proportionally to the inverse of the Hartmann numbe
This result can be guessed by writing the full discretised equation of the explicit schel
in terms of the contribution of each grid point to the value of the velocity at the new tin
step. The analysis of the monotonicity of the scheme will then help in finding the origin
the numerical instability.

Such a development, however, needs some assumption. The classical literature ol
merical simulation deals with the numerical stability of finite differences schemes f
convection—diffusion equations without a pressure term. The criteria obtained for num
cal stability are commonly used for the numerical solution of the Navier—Stokes equatic
even though they do not take the pressure term into account. Indeed, including the pres
in the numerical stability analysis is not trivial, as it has no explicit expression and depel
on the boundary conditions. Nevertheless the classical Courant—Friedrich—Lewy (CFL)
terion and the time step limitation in terms of the diffusion time scaled on the mesh inter
are commonly and successfully applied to the Navier—Stokes equations, although the
derived for pure convection—diffusion equations.

In the following stability analysis, the pressure gradient will be dropped as well as t
electric potential. Indeed, the electric potential is computed similarly to the pressure. Tt
is no explicit expression for this scalar which is the solution of a Poisson equation depenc
on the boundary conditions, just like the pressure. It will later be shown, from the numeri
experiments, that the conditions obtained from this analysis apply successfully to the orig
set ofMHD equations (1)—(4) discretised as (6)—(11). After dropping the electric potenti
only the term(u x §) x ¥ remains in the expression of the Lorentz force.

As usualin numerical stability analysis, the advection term s linearised s@ thiat® u)
is replaced withV - (up ® u), whereug is supposed to be constant. The momentum equi
tion (6) is then reduced to

aa_‘t’w.(uo@u_Re—lw):Njx9=N<ux9>x9. (19)

3.1. Numerical Instability Due to the Electromagnetic Term

Let us write the finite difference scheme for the electromagnetic ternu. ;A§ is per-
pendicular tau, it cannot be discretised on the same edge a finite volume as the edge wl
u lies. Thereforeu x ¥ has to be averaged from four neighbouring points, as pictured
Fig. 1. Then, the same problem occurs farx §) x §. In the end, the Lorentz force is
averaged from the values ofat nine different grid points. For instance, Xsomponent is

R . 1 1 1
WUXY) X Yx 16 = —gYiy2ik — gUitaz ik — gUi-1/2jk — gUitl/2jke1
1u 1 U 1 y
8 i+1/2,j,k—1 16 i+3/2,j,k+1 16 i+3/2,j,k—1
1 1
- Rui—l/z.j,kﬂ - T6Ui—l/2,j,k—1- (20)

For simplicity, suppose that the velocity= (u, v, w) is such thatv =w =0, which
corresponds to a fully developed laminar flow in a straight duct. Then the finite differer
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FIG. 1. Construction of a vector product from four points on a staggered giidmponent of thel x ¥ in
the electromagnetic force.

scheme for theHD convection—diffusion equation (19) discretised in time with a first-orde
approximation similar to (11) reduces to the explicit form

n+1 _ n n n n n
Uiz jk = Qalitgp kT &Uiiap jk T aUi_1o jk T 4Uj 10 1k +3UiL10 i 1k
n n n n
FapUi 1 ket T A7UiL1/2 k-1 T AU 32 j k1 T A9 Uiys2j k-1

+a10Ui 12 j k1 + AU 10 ko1 (21)
with
1 ) ) Nl
a1=l—ZAtN—2At(Ax + Ay “+ Az “)Re

1 1
a, = —EAtAx_luo — gAtN+ AtAXx2Re’?

1 1
ag = +§AtAx’1u0 — gAtN+ AtAXx2Re?
a; = as = AtAy ?Re!
1 21
—a=aq=a1 = 1AtN
dg = adg = Q10 = A1 = 16 .

This scheme is not monotone [10], as the coefficiegts. ., a;; are always negative. The
coefficientsay, ap, ag andag, a; are also negative when the following conditions are no
satisfied:

Re

At < 22
T 2(AX 24+ Ay2+ Az 2 + IReN (22)
Reug|AX < TN AX (23)
4 Juol
22
az< 22 (24)
Ha

However, monotonicity is a strong condition for numerical stability. While a monotor
scheme is numerically stable, a non-monotone scheme may be stable. The numerical e
iments show that the conditions (22)—(23) actually hold for stability. When these conditic
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FIG. 2. Velocityu= f(y, z) at Ha= 200 with unstable scheme.

are satisfied, the scheme is stable, even though the coeffigignts, a;;, corresponding
to the furthest location + % +1, j, k£ 1 from the central grid poirt+ % i» k, are neg-
ative. When these conditions are not satisfied, the scheme is unstable. Equation (22) i
diffusion limitation on the time step. Compared to classical computational fluid dynau
ics, this limitation is stronger, as it includes an electromagnetic term at the denomina
Equation (23) is a mesh Reynolds number limitation and can be rewritten as a limitation
AX:

2
2Uo <2uo> N 8 232 (25)

— < —
Ha&Z — Ha

Most important is the condition (24), which has no equivalent to classkmlThe nu-
merical simulations of the three-dimensional code show numerical instabilities, as see
Fig. 2, when this condition is not satisfied and the walls of the channel are electrice
conducting. When the walls are electrically insulating, this condition does not hold; t
simulations remain numerically stable provided the other conditions (22) and (23) are -
isfied. Unfortunately, applications ofHD duct flows such as lithium blankets for fusion
reactors imply that the walls are made of steel, and any coating of the interior of the d
with some insulating material is made difficult by the conditions of use under high temp
ature. The strongest numerical oscillations appear with a perfectly conducting wall. Tl
decrease with lower conductivities, but are present as soon as the walls are not insuls
This is consistent with the previous simulations [1] and [2], where all simulations at r
atively large Ha numbers are performed with insulating walls while the simulations wi
conducting walls are limited to Ha50 on a grid of 32« 32 points in the cross section
of the duct, i.e., witlAy = Az=1/16. The condition (24) for such a Hartmann number is
Az<1/17.7.

This problem is the strongest limitation of the scheme (21). The leagtiwhich cor-
responds to the space discretisation in the direction perpendicular to the side layers st
be inversely proportional to the Hartmann number. This implies that these layers shc
be discretised as if they were as thin as the Hartmann layers; while the numerical res
tion of the side layers only implies thatz « Ha~/?, the numerical stability implies that
Az Ha !, leading to unnecessarily fine meshes at high Ha.

3.2. Stable Scheme for the Electromagnetic Terms

An alternative is to compute the Lorentz force from the following equation which ir
volves the component; = —(u x ¥) x ¥ of the velocity, perpendicular to the magnetic
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FIG. 3. Velocity u= f(y, z) at Ha= 200 with stable scheme.
field (Fig. 3):
jxy=—-VIdxy—uj. (26)
Thex-component of the double vector product is then simply
(U X Y) X Ylxs106 = —Uit1/2,j k- (27)

Thus, the finite difference scheme for thab convection—diffusion equation (19) reduces
to

n+1 __ A/ 0 Al /N /N /N
Uifipjk = QUigojk T RUiian T a3Ui_1ojk + QUi 1011k T Uiy 1k

+ U 12 j ka1 + AU 12 k1 (28)

with

1
a=1- 21AtN —2At(AX 2+ Ay 24 Az ?)Re?

1
a, —EAtAx‘luo + AtAX?Ret

1
a éAtAx*luo + AtAx?Re!
a, =a, = AtAy ?2Re! and aj=a,=AtAz?’Re ..

This scheme is monotone as long as the following conditions are satisfied:

Re
At < 29
T 2(AX 2+ Ay 24+ Az72) + ReN (29)
2
Relup|AX < 1 Nax (30)
4 |uol

Its stability isindependentf how coarse the grid is in the direction perpendicular to botl
velocity and magnetic field.

3.3. Accurate Scheme for the Electromagnetic Terms and Fully Staggered Grid

Unfortunately, the numerically stable scheme(ox §) x ¥ as defined above is inaccu-
rate when it is used together with thev ® x § term of the Lorentz force (18) discretised
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FIG. 4. Ordinary staggered grid.

on an ordinary staggered grid (Fig. 4). Indeed, the derivai@dz involved in the term
—V® x ¥, which needs to be known at the grid point % i, k before it is added to the
x-component of the momentum Eqg. (19), can only be written as an average of finite diff
ences centred at j, k andi +1, j, k,

ad
0z

(31)

_ 1(<I>i,j,k+1 — D j k-1 n Diy1j ki1 — Cbi+1,j,kl>
12k 2 2Az 2Az '
unless a higher order interpolation involving more grid points is used.

A better scheme fa¥®/dzis obtained if a fully staggered grid (Fig. 5) is used, as alread
pointed out by the author [12]. Such a grid was first used in a large eddy simulatiBpof
duct flow by Shimomura [11] at Ha 50. On this grid, the derivative ob can then be
discretised more simply as

0P _ Dita2j k12 — Pivazjk-1/2

— (32)
9Z |i11/2,j k Az

This form (32) is also more accurate than (31). Moreover, if the accurate scheme (27)
(ux¥y) x¥y=—u, is combined with the less accurate scheme (31} Wd x ¥, then the

results are not only inaccurate but completely wrong. Numerical tests on fully develoy
flows show that the velocity profile(y, z) at a given Ha number looks like that of a flow at
a much lower Ha number; the side layers are much thicker than they should be. Altho

iy
S

FIG.5. Fully staggered grid.
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the scheme is consistent, its convergence with respect to the refinement of the grid ca
be afforded with reasonable computer power at Hartmann numbers as moderate as 10
becomes impossible at higher values of this number.

The reason for this poor convergence can be seen easily. Let us neglect the varia
of u along the magnetic field, which are much smaller in the side layers compared t
those in thez-direction. Then the error of the scheme (31N ® x ¥ is at leading order
(AZ?/6)(3%®/3Z%) while that of the scheme (32) is only\z?/24)(83®/82%). However,
the inaccurate scheme (31) used with the averaged scheme (20)d¢n x ¥ gives, when
it is stable, the same results as those of the accurate scheme (32) combined with the
value (27). The reason for this is that the schemes (20) and (31) accumulate two er
which almost cancel each other. Indeed, the finite difference (20) gives a negative errc
order—(Az%/4)(3%u/0z%).

In the end, it turns out that the numerically stable scheme (32) has to be used with a f
staggered grid so that (26)—(27) is used for an accurate computation of the Lorentz fo
Therefore, this combination is retained for the simulations described here.

The numerical experiments with the three-dimensional time-dependent scheme (6)—
corresponding to the set ofHD equations (1)—(4) show that the scheme is numericall
stable under the monotonicity conditions (29) and (30), although these conditions w
guessed from simpler equations. When these conditions are not satisfied, the simula
are found to be numerically unstable. In the case where the diffusion—time limitation (:
is not satisfied, strong oscillations give an overflow after a few time steps. When o
the mesh Reynolds number condition (30) is not satisfied, small oscillations appear
amplify slowly. They can be avoided if an upwind scheme is used. A second-order upw
scheme [9] is actually used here when the mesh Reynolds number is greater than two.
the influence of the Lorentz force on numerical stability remains only in the condition (2!
The diffusion limitation on the time step is stronger than that of the scheme (21) of t
ordinary staggered grid.

Finally, the fully staggered grid, together with the schemes (27) and (32), is the best che
for explicit finite volume computation ofHD flow with standard second-order central finite
differences. Indeed, the most restrictive stability condition on the Hartmann number (
is avoided and the mesh Reynolds number limitation is not altered by the electromagn
force. Figure 3 gives an example of velocity profile obtained with these schemes us
the same parametefida= 200) as for the numerically unstable example (Fig. 2). Anothe
example at even higher Hartmann numfida= 1000 and with the special treatment of
the Hartmann layers described in the next section is given in Fig. 8. Runs of unsteady fl
will be found in the last section.

4. BOUNDARY CONDITIONS

4.1. Arbitrary Conductivity of the Walls

The walls can have an arbitrary electrical conductivity, and the currents in these
boundaries are calculated using the thin wall condition. The thicknedgsthe walls is
supposed to be much smaller than the half-width of the ¢uet a) so that the currents in
the walls are modelled as a sheet of current.

The normal component of the current coming from the fluid is a source for the curre
in the wall. Therefore it gives rise to a nonzero divergence of the two-dimensional curr
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FIG. 6. Electric current coming from the fluid and diverging onto an electrically conducting wall.

in the wall (Fig. 6). The relation between the currents can be written as Eq. (33), in ter
of the electric potential and the wall conductance ratiby splitting the gradient operator
into its components normal and tangential to the wall:

Vod = V- (cVid)  withc = GLaE (33)
o

The boundary conditions on the electric potential in the three-dimensional Poisson et
tion (8) should match the conservation law (33) for the currents in the walls. For this reas
the code uses an iterative procedure, which differs from a previous work in the sense tr
does not call a two-dimensional Poisson solver to find the potential on the walls.

One starts with Neumann boundary conditions by setting its value at the previous i
ation. Then, the Poisson equation in the fluid (8) is solved. Now, the potential has a ve
everywhere, including the walls, and the right-hand side of Eq. (33) can be calculated.
Poisson equation (8) is solved again with new Neumann boundary conditions, now defi
as Eqg. (33). The iteration is performed until convergence is reached. The convergent
faster when using the relaxation parametet 1, such that

Vad"™ = (1 — 0)V,d%9 + @V, oo, (34)

When starting the program, the first time step may need 100 or more iterations, wil
the following time steps need only an adjustment with respect to the previous time step
therefore only need a few iterations. A maximum of approximately 10 iterations are nee:
for the most unstable cases described in the last section.

4.2. Integral Treatment of the Hartmann Layer

The Hartmann layers, which are the layers perpendicular to the magnetic field, hay
thicknesss = Ha* inversely proportional to the Hartmann number. For very high values
Ha, they are so thin that it is hard to resolve them numerically. Therefore, Hartmann lay
are treated here analytically, using the integral relation that links properties of the ¢
with the variables at the wall and which have been used for inertimlesschannel flow
simulations [5]. The solution in the core as well as in the side layers is obtained accorc
to the three-dimensional numerical scheme presented in the previous paragraphs. The
is therefore to use conditions which apply to the core variables instead of the phys
boundary conditions for the fluid at the Hartmann wall.

In the Hartmann layers the currents find a path to close their circuit as they do witl
conducting walls. The Hartmann layers act like an additional conducting sheet paralle
the conducting walls. The conductivity used in the thin wall condition defined by Eqg. (3
is therefore effectively increased by the integral conductivity of the Hartmann layers, wh



192 L. LEBOUCHER

is proportional to their thickness:
Vn® = Vi - [(C+ 5 Vi D). (35)

The potential does not vary across the Hartmann layer to the leading order of approxima
so that the current component normal to the wall is still well represented by the norr
component of the core potential gradient.

Once the core solution is known, the solution within the layers can be reconstructe
desired. It is known that the velocity components tangential to the wall decay exponenti
towards the wall.

up = uS (1 — e Ham, (36)

Note thatn stands here for the coordinate along the inward normal to the wall and t
superscriptC denotes values of the core velocities. The component normal to the w
of the core velocity is obtained by integrating the equation for the conservation of ma
V - u=0, across the layer. This leads to the condition

u$ =Ha v, - ut. (37)
In the code, the high Hartmann number limit is implemented,
u$=0  asHa- oo. (38)

The kinematic conditions for the tangential components of the core velocity are estima
at the wall by a linear or second-order extrapolation of the core solution. Higher orc
extrapolations were also used and did not significantly change the results.

Figure 7 shows the velocity profile of a fully developed flow at4H&0 with a finite
conductivity of the wallgc = 0.05) and a resolution afiy x n, =32 x 32 grid points in the
cross section. In Fig. 8, the most difficult parameters were chosen while keeping the s
total number of grid points as the resolution is sehjox n, =8 x 128. The Hartmann
number is as high as Ha1000. This number could not be reached without the analytic:
treatment of the Hartmann layers. The walls are perfectly conducting. While this is the wc
case interms of numerical stability, as mentioned in Section 3, the code remains humeric
stable. Compared to Hunt's exact analytical solution [6] in the case of conducting Hartm:
walls and insulating side walls corresponding to high velocity jets, the accuracy of the c
at Ha= 100 is 7% for a resolution af, x n, =8 x 32, 2% forny x n, =16 x 64, and 0.3%
for ny x n,=32x 128.

FIG. 7. Analytical treatment of the thin Hartmann layers. Fully developed velocity profief (y, z) at
Ha=50 with the wall conductance rat®= 0.05 and a resolution of 3% 32. The velocity in the thin Hartmann
layers is not displayed.
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FIG. 8. Same as Fig. 7 but at the very high Hartmann numbe&=HB00 and with perfectly conducting
walls. The resolution is & 128 (same total number of grid points). The extremely thin Hartmann layers are n
displayed.

5. SIMULATIONS

5.1. Introduction

Magnetic fields tend to damp instabilities in electrically conducting fluids. This effect
unwanted for some applications where high heat transfer and turbulence are preferre
order to enhance the instability of a flow through an insulating duct, the walls perpendict
to the magnetic field can be supplied with a pair of electrically conducting strips (Fig. '
as was originally proposed by Kolesnikov [13]. This device was used by this author
studyMHD shear layers. It may also be used as a turbulence promoter in order to impr
the cooling of fusion reactors. Recently, it has been modelled analytically and numeric
by Bihler [14] as a two-dimensional flow between two infinite plates and investigat
experimentally by Debray [15].

5.2. Flow between Two Infinite Plates with a Conducting Strip

First, the code was tested with respect to the results obtained in two dimensionislby. B~
The code was run with no stress boundary conditions at the side walls, using the follow
parameters: Ha 1000; ratio of the distance between the two plates to the strip widib;
insulating Hartmann walls; size of the gridiny, z-directions=27 x 16 x 128 cells; com-
putational domain: & x < A, wherex =0.802,—1 <y < +1, —1 < z < +1; conductivity
of the stripcy = 4.2 x 10?; ratio of the width of the channel to the width of the st&jp= 10,
the conductivity of the strip being smoothed at the edges as in Ref. [14],

cm (39)

sinhz 6
1+ (sinha(1>

FIG. 9. Duct with electrically conducting strips.
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The code is run with periodic boundaries at the inlet and outlet, separated by a diste
equal to the wavelength of the instability, which is given by the linear stability analysis.

The critical Reynolds number for the onset of the instability is between 2000 and 2100
the three-dimensional code, and 1800 for the two-dimensional code and the linear stak
analysis. The Reynolds number is based on the velocity far from the strip. The same pa
is found on the vorticity lines on both codes for a higher Reynolds number of 4000. T
discrepancy in the critical Reynolds number may have its origin in the higher numeri
diffusion of the three-dimensional code compared to the two-dimensional code, which u
a higher resolution in the plane perpendicular to the magnetic field.

FIG. 10. Evolution of a magnetohydrodynamic shear layer created by electrically conducting stripsinad
(see geometry in Fig. 9). View of thecomponent of the vorticity in the plang £ 0). The frames are ordered
from bottom to top and from left to right at the dimensionless time intervals 2.5, 5.0, 7.0, 10, 12.5, 15.0, 17.5,
and 22.5 from the initial perturbation.
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5.3. Unstable Flow in a Duct with Conducting Strips

The code is run for the same parameters as the experiment performed by Debray |
The parameters of the experiment and its numerical simulation are the followirg388;
N = 29; Re=3108; ratio of the distance between the two plates to the strip &jdth6;
all walls insulating; size of the grid ix, y, z-directions=27 x 16 x 128 cells; compu-
tational domain: < x < (A =2.79) and—2 <y < +2, —1 < z < +1; conductivity of the
stripcp = 4.2 x 102; and half width of the stripa, =0.167. The Reynolds number is now
based on the mean velocity that can be deduced from the flow rate. The flow rate is |
constant throughout the simulation. The length of the computational domain is set to
wavelength that was found experimentally. Note that the figures represent the solutior
two wave-lengths, although the computational domain extends over one wavelength o

The simulation is initialised with a small perturbation on the velocity. This perturbatic
is rapidly amplified as large eddies around the strip (Fig. 10). The flow is essentially t
dimensional, as shown by thecomponent of vorticity plotted at differentlevels of the
duct (Fig. 11). The componentof the velocity parallel to the magnetic field differs from
zero only in the region of strong shear (Fig. 11). It remains very small, about 50 tinr
smaller than the maximum value of

During a transient period, these vortices grow relatively slowly compared to the init
small perturbation and develop from the strip to the side walls. When they reach the ¢
layers, some new vortices are created and develop from the side layers to the strip.
vortices occurring from the side walls become stronger than the initial vortices that ar
from the strips. At this time the maximum transverse velogitghanges rapidly from 0.4
to 1.3. Later, the whole domain is strongly unstable and the resolution of the simulat

FIG. 11. Departure from the two-dimensional nature of magnetohydrodynamics duct flows. Left: view o\
two wavelengths of the-component of the vorticity in the planey £ —a, —a/2, 0). Right: view over one
wavelength only of the perturbation in tiyecomponent of the velocity in the plang+£ 0.5).
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becomes too weak. However, no numerical instability in the form of a sudden overfl
appears, which shows that the numerical scheme is reliable.

5.4. Unstable Flow in a Duct with All Walls Insulating

Since the side layers become unstable soon after the shear layer between the strips
a long time before its vortices reach the sides of the duct, another run under the s
conditions but without the conducting strips is performed to find out how unstable the fl
would be without any special device. Therefore a fully insulating duct is considered he
Since there are no experimental data in that case, the wavelength of the previous simul
is chosen as a first attempt to model this flow. The Reynolds number is again based ot
mean velocity, based on the constant flow rate. The initial perturbation is the similar to
previous one, now located in the boundary layers attached to the side walls.

The perturbation needs a much longer time than in the previous section, in order tc
amplified (Fig. 12). There is now almost no three-dimensional effect in the component:
velocity perpendicular to the magnetic field since no electrical discontinuity happens to

"~

'}

(31 )
il

FIG.12. Evolution of the unstable magnetohydrodynamic boundary layers at the walls parallel to the magn
field in an electrically insulated duct. View of thecomponent of the vorticity in the plang £ 0). The frames
are ordered from bottom to top and from left to right at the dimensionless time intervals 52.5, 55.0, 57.0, 60, 6
65.0, 67.5, 70.0, 72.5, 75.0, 77.5, and 80.0 from the initial perturbation.
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at the Hartmann walls as in the case of the conducting strips. When some vortices apj
they are located close to the side walls and extend to the bulk of the flow, although the)
not reach the central core of the flow. The wavelength of the perturbation is half the len
of the computation domain in the axial direction, until the vortices coming from a side w:
meet the vortices coming from the opposite side wall. At this stage, the vortices coale
to form a larger structure with a wavelength equal to the length of the domain. After
dimensionless units of time, the instability has not reached such a stage that the resol
of the grid becomes as poor as in the run with the conducting strips.

6. CONCLUSION

A stable and consistent scheme for finite volume computatiemofflows at negligible
magnetic Reynolds number has been presented and tested on unsteady duct flows. Anal
boundary conditions for the velocity and the currents at the walls perpendicular to
magnetic field were combined with the numerical boundary conditions for electrica
conducting walls, allowing three-dimensional simulations at high Hartmann number.
shown that such flows are unstable with or without turbulence promoters such as conduc
strips. These turbulence promoters certainly increase the instability of duct flows, but
Reynolds numbers appropriate for fusion-reactor problems are much higher than in
paper. It is therefore expected that no device is needed to create turbulence, at least fc
conditions of the last simulation where a straight duct is electrically insulated on its whe
interior surface.
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